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Abstract. We study a dynamical Ising-like model of agents’ opinions (buy or sell) with learning, in which
the coupling coefficients are re-assessed continuously in time according to how past external news (time-
varying magnetic field) have explained realized market returns. By combining herding, the impact of
external news and private information, we find that the stylized facts of financial markets are reproduced
only when agents misattribute the success of news to predict return to herding effects, thereby providing
positive feedbacks leading to the model functioning close to the Ising critical point.

PACS. 64.60.Ht Dynamic critical phenomena – 89.65.Gh Economics; econophysics, financial markets,
business and management – 87.23.Ge Dynamics of social systems

1 Introduction

Social systems offer a fascinating field for the application
of recent concepts and methods developed in Physics to
tackle complex N -body systems with nonlinear feedbacks
and many competing states. A long tradition started with
the application of Ising models and its extensions to so-
cial interactions and organization [1–4]. A large set of
economic models can be mapped to various versions of
the Ising model to account for social influence in individ-
ual decisions (see [5] and references therein). Other recent
works using the Ising model include models of bubbles
and crashes [6,7], a version with stochastic coupling co-
efficients which leads to volatility clustering and a power
law distribution of returns at a single fixed time scale [8],
and models of opinion polarization [9,10]. The dynami-
cal updating rules of the Ising model can be shown to
describe the formation of decisions of boundedly rational
agents [11] or to result from optimizing agents whose utili-
ties incorporate a social component [5]. The Ising model is
one of the simplest models describing the competition be-
tween the ordering force of imitation or contagion and the
disordering impact of private information or idiosyncratic
noise, which leads already to the crucial concept of spon-
taneously symmetry breaking and phase transitions [12].

However, human beings are not spins, they can learn,
that is, adapt the nature and strength of their interac-
tions with others, based on past experience. In the lan-
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guage of the Ising model, this amounts to generalizing
to time-dependent coupling coefficients which reflect past
experience. Here, we study a generalized Ising model of in-
teracting agents buying and selling a single financial asset
who base their decisions on a combination of imitation, ex-
ternal news and idiosyncratic judgments. The agents mod-
ulate their tendency to imitate based on their assessment
of how past news have explained market returns. We dis-
tinguish between two possible updating rules that we refer
to as (i) boundedly rational and (ii) irrational. We refrain
from using the strict term “rational” which has a precise
meaning in economics (subjective expectations that co-
incide with objective ones). Instead, we call “boundedly
rational” those agents who decrease their propensity to
imitate if news have been good predictors of returns in
the recent past, as they correctly attribute the cause of the
price moves. In the irrational version, agents misattribute
the recent predictive power of news to their collective ac-
tion, leading to positive self-reinforcement of imitation.
We show that the model can reproduce the major stylized
facts of financial markets only when the updating of the
imitation strength is irrational, providing a direct test and
the evidence for the importance of misjudgment of agents
biased toward herding. This model also offers a dynami-
cal derivation of the multifractal properties of the struc-
ture functions of the absolute values of returns and their
consequences in the characteristic power law relaxations
of the volatility after bursts of endogenous versus exoge-
nous origins [13]. In a nutshell, our model suggests that
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the news serve as the substrate for fostering social inter-
actions and reinforcing herding. Technically, the stylized
facts result from the fact that the model operates around a
critical point of an Ising model, with coupling coefficients
which are time-dependent and endowed with a memory of
past realizations, such that agents organize spontaneously
within clusters of similar opinions, which become very sus-
ceptible to small external influences, such as a change of
news. This may explain the occurrence of crashes [14].

2 Presentation of the model

Consider n2 agents interacting within a n × n 2D square
lattice network N (we have verified that the properties
described below are not sensitive to n in the range 20–100
that we tested). At each time step t, agent i places a buy
(si(t) = +1) or sell (si(t) = −1) order according to the
following process

si(t) = sign

⎡
⎣∑

j∈N
Kij(t)E i[sj ](t) + σiG(t) + εi(t)

⎤
⎦ , (1)

where Ei[sj ](t) is the expectation formed by agent i on
what will be the decision of agent j at the same time t.
An agent i imitates only her friends, that is Kij = 0 if
i = j or j is not a friend of (connected to) i.

Expression (1) reduces to the dynamical stochastic for-
mulation of the Ising model, when replacing the expecta-
tion Ei[sj ](t) by sj : then, the first term derives from the
gradient of the Ising Hamiltonian with respect to the spin
value, the second term σiG(t) plays the role of an external
magnetic field and the third term embodies the thermal
fluctuations. Note that the dynamical stochastic formu-
lation of the Ising model is equivalent for its statistical
properties to the more standard form obtained from the
partition function calculated with an Hamiltonian writ-
ten in terms of a sum over pairs of spins of the form
−∑

i,j Kijsisj − G
∑

i si, where the pairs are connected
according to some graph topology reflecting the physics
or social nature of the problem. The stochastic dynamical
definition of the Ising model is obtained by writing that a
given spin is updated proportionally to the derivative of
the Hamiltonian with respect to this spin. This so-called
over-damped dynamics leads to our above equation (1).
The use of Ising models of a similar type to describe
opinion formation has a long history [15–18]. The present
work constitutes an extension to study non-variational dy-
namics by allowing non symmetric couplings evolving and
adapting in time. The impact of external news that we
study here is reminiscent of Sethna et al. [19] who found
a transition in a random field Ising model as a function
of a changing external field. Our work differs however in
several ways: local spins are not pinned by local random
fields and our external magnetic field is stochastic. In ad-
dition, agents (spins) evolve their coupling by adapting as
a function of the past behavior of the global systems in
response to the stochastic external news.

From the view point of a model of interacting investors,
expression (1) embodies three contributions:

1. imitation in which Kij is the relative propensity of the
trader i to be contaminated by the sentiment of her
friend j;

2. the impact G(t) of external news (positive resp. nega-
tive for favorable resp. unfavorable news), which is an
i.i.d. standard Gaussian noise, and σi is the relative
sensitivity of agent’s sentiment to the news, uniformly
distributed in the interval (0, σmax ) and frozen to rep-
resent the heterogeneity of the agents;

3. the idiosyncratic judgment εi(t) associated with pri-
vate information, assumed to be normally distributed
around zero with an agent-dependent standard devia-
tion sε,i equal to the sum of a common constant CV
and of a uniform random variable in the interval [0, 0.1]
again to capture the heterogeneity of agents.

We have tested several implementation of the formation
of expectations Ei[sj ](t) in (1), such as backward looking
(Ei[sj ](t) = sj(t− 1) for all i and j’s) or information cas-
cades along specific chains within the network [20], which
give similar results.

Our model makes the simplifying approximation that
the agents’ decisions are dominated by their interactions
with other agents and with external news as well as the
effect of their idiosyncratic analysis. We neglect the pos-
sible influence of the price itself on the decision making
process. This assumption is convenient to simplify the
analysis and makes more transparent the relation with
the Ising model. Our model is thus at the opposite end
to the class of agent-based models, such as the minor-
ity and majority games, which emphasize the oppositive
view point that agents do not interact directly but all look
at the price aggregating their decisions. While neither as-
sumption is realistic, it is interesting to study their impact
separately. The present paper offers such an attempt. At
first sight, neglecting the possible influence of the price
itself on the decision making process may appear unre-
alistic. But, this is actually the strategy adapted by so-
called “value”-investors who analyze the theoretical value
of a firm based on fundamental economic indicators and
allocate correspondingly their portfolio basically indepen-
dently of the stock market price. Indeed, in the view of
value investors, the erratic variations of the instantaneous
stock market price are perceived as noisy stochastic per-
turbations which are irrelevant to a sound medium- and
long-term investment process. Our neglect of the possible
influence of the price itself on the decision making pro-
cess thus amounts to considering mostly a crowd of value-
investors and to study their decision process, assuming ei-
ther that they take a boundedly rational or an irrational
stance with respect to external news.

The market price is updated according to
p(t) = p(t − 1) exp[r(t)] where the return r(t) obeys

r(t) =
1

λN

∑
i∈N

si(t), (2)

where λ measures the market depth or liquidity. The
return is thus proportional to the “magnetization” or
aggregated decisions of the agents. Note that agents do
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not use the market returns to form their expectations and
to make decisions, except indirectly through the following
term. We account for the adaptive nature of agents and
their learning abilities by updating the coefficient of in-
fluence of agent j on agent i according to the following
rule:

Kij(t) = Ki(t) = bi +αKi(t− 1)+βr(t− 1)G(t− 1). (3)

The idiosyncratic imitation tendency bi of agent i is uni-
formly distributed in (0, bmax) and frozen. The coeffi-
cient α quantifies the persistence of past influences on the
present. It captures the fact that social connections evolve
slowly and exhibit significant persistence, as documented
in numerous studies [21,22]. Networks of investors commu-
nicating their opinions and sentiment on the stock market
are similarly persistent. The last term with β �= 0 quan-
tifies how agent i updates her propensity for imitation
based on the role of the exogenous news G(t) in deter-
mining the sign and amplitude of the observed return in
the preceding time period. Note that, by construction, the
model is non-variational as Kji(t) �= Kij(t) in general if
the bi’s are different, but this is not crucial for our results.
This means that the dynamics can not be derived from a
Hamiltonian (or energy functional). A famous example of
non-variational dynamics is turbulent hydrodynamics.

The case α = 0 was previously investigated in part
by Gonçalves in Ref. [20]), who provided a first gener-
alization step of the model of imitative noise traders in-
troduced in [6]. The present work generalizes Gonçalves’s
model further by introducing both a memory of the co-
efficient of influence (α �= 0) and the possibility of non-
rational behavior (β > 0). The memory term captures the
fact that agents do not change their propensity to imi-
tate completely upon receipt of a new information, but
rather combine this new information with their past ex-
perience. Considering the possibility that β can be posi-
tive addresses a fundamental issue, which is the possibility
that investors misinterpret information, which is here the
real source of predictability. This addresses a large con-
cern of the literature on behavioral finance, namely how
mutually-reinforcing optimism may lead to price distor-
tion and anomalies.

The sign of the coefficient β is crucial. For β < 0,
agent i is less and less influenced by other agents, the bet-
ter has been the success of the news in determining the
direction and amplitude of the market return. This pro-
cess is self-reinforcing since, as Kij decreases, the domi-
nant term becomes σiG(t), which further ensures that the
news correctly predict the decision of agents and therefore
the direction of the market move, thus decreasing further
the coefficient of influence Kij . Reciprocally, agents tends
to be more influenced by others when the news seems to
incorrectly predict the direction of the market. The news
being not reliable, the agents turn to other agents, be-
lieving that others may have useful information. This is in
agreement with standard economics which views the stock
market as an efficient machine transforming all news into
prices.

For β > 0, the more the news predict the direction of
the market, the more the agents imitate other agents. This
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Fig. 1. (Color online) Average return 〈r〉 over time as a func-
tion of the average coefficient of influence 〈K〉 over time, where
K is defined in (3), obtained by varying bmax from 0.1 to 100.
Inset: dependence of 〈K〉 as a function of bmax .

is the “irrational” case where agents either mis-attribute
the origin of the market moves to herding rather than
to the impact of news, or misinterpret the exogenous
character of news in terms of endogenous herding or in-
fer that other agents will be following more eagerly as a
group the direction given by the news. This may occur
due to mutually-reinforcing optimism [23] and overconfi-
dence [24]. This case captures the evidence from a grow-
ing literature in neuro-psychology and behavioral finance
documenting that feelings, mood and overconfidence af-
fects perception through misattribution leading to incor-
rect judgments or affecting people’s ability to process in-
formation [25–31].

We fix λ = 40 in our simulations to obtain returns with
amplitudes comparable to that of empirical observations
and show results for α = 0.2. Similar results are obtained
for α = 0.4, 0.6, and 0.8. We have explored the properties
of the model in the parameter space of bmax , σmax and
CV . There is no loss of generality in fixing |β| = 1 to
explore the relative importance of the term βr(t−1)G(t−
1), since the typical scale of the Ki’s is set by bmax whose
amplitude is varied in our numerical exploration.

3 Results

Figure 1 illustrates the existence of an Ising-like phase
transition, as a function of the control parameter bmax for
both regimes β = ±1, visualized by the S-shape depen-
dence of the average return 〈r〉 over time as a function
of the average coefficient of influence 〈K〉 over time. The
abruptness of the jump in r is controlled by the size of
the system (here 50× 50 agents) as in standard finite-size
effects. As we describe below, we find realistic properties
for bmax in the range 0.2–0.6 which correspond precisely
to range of 〈K〉 over which the transition occurs.
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Fig. 2. (Color online) Probability distribu-
tion density (in logarithmic scales) of log-
returns at different time scales τ of a price
time series obtained with λ = 40, α = 0.2,
bmax = 0.3, σmax = 0.03, and CV = 0.1. The
log-returns rτ are normalized by their cor-
responding standard deviations στ . The pdf
curves are translated vertically for clarity.
The thick dashed line is the Gaussian pdf.
The other dashed lines have been obtained
by τ -fold convolutions of the pdf of the one-
time step return r1(t) = ln p(t)/p(t − 1).

We study relatively small systems (from 20 × 20 to
100×100) because there are many evidences that the effec-
tive number of investors moving the price of a given asset
at any time is of the order of tens to a hundred, no more
(see for instance [32]). Considering 400 to 10 000 agents
thus seems sufficient for our purpose.

3.1 Case β = −1 (“boundedly rational” agents)

For β = −1, and bmax < 0.6, the attractor of the dynamics
is characterized by negligible imitation and only the news
and private information terms are important for the dy-
namics, due to the self-reinforcing mechanisms discussed
above leading to the system functioning in the “paramag-
netic” phase. The collective decision

∑
i si and therefore

the market return have little or no relationship with the
external news. Hence, the term βr(t+1)G(t) takes random
signs from one time step to the next, leading to an effec-
tive random forcing added to the autoregressive equation
Ki(t) = bi + αKi(t − 1). We thus expect Gaussian dis-
tributions of returns when bi/(1 − α) is smaller than Kc

and bimodal distributions when bi/(1−α) > Kc reflecting
the slaving of the global opinion to the sign of the news.
Our simulations, which have scanned 480 different mod-
els for bmax from 0.1 to 0.5 with spacing 0.1, σmax from
0.005 to 0.08 with spacing 0.005, and CV from 0.1 to 1.1
with spacing 0.2, confirm this prediction. Consider the dis-
tribution of returns rτ (t) = ln[p(t)/p(t − τ)] at different
time scales τ . For large idiosyncratic noise (large CV ) and
not too large bmax , the distribution of returns is Gaussian
for all time scales τ . For smaller CV ’s and larger bmax ,
we observe multimodal return distributions. In the pa-
rameter space that we have explored and notwithstanding
our best attempts, we have not been able to find a set of
parameters leading to distributions of returns exhibiting

a monomodal shape with fat tails for small time scales,
evolving slowly towards Gaussian distributions at large
time scales, as can be observed in empirical data [33–36].
In addition, the correlation function of returns at time
scale τ (Cτ (r, r)(l) ≡ 〈rτ (t)rτ (t + l)〉 where l is the lag)
and of volatilities (Cτ (|r|, |r|) ≡ 〈|rτ (t)||rτ (t + l)|〉) have
similar amplitudes and decay with the same characteristic
time scale as a function of time lag. This is very different
from the observed correlations of financial markets, with
very short memory for returns and long-memory for the
volatility.

We emphasize that there are no significant correlations
of returns for this “boundedly rational” case. The main
point is that the correlations of the returns and of the
volatility are similar, with the same characteristic time
scale of decay, in contradiction with real data for which
the correlation time scale of returns is of the order of min-
utes while the time scale of the correlation of volatility is
days or weeks. These observations do not imply arbitrage
opportunities for boundedly rational agents. Indeed, it is
well-known that a small correlation time for returns does
exist in real market but does not lead to arbitrage op-
portunities due to market friction (transaction costs and
slipage).

3.2 Case β = +1 (“mis-attributing” agents)

For β = 1, we obtained the following main stylized facts of
financial stock markets: (i) distributions of returns at dif-
ferent time scales τ (Fig. 2); (ii) correlation function of re-
turns and of the absolute value of the returns (Fig. 3); (iii)
scaling of the moments of increasing orders of the absolute
values of the returns (qualifying multifractality); (iv) the
existence of a hierarchy of exponents controlling the relax-
ation of the volatility after an endogenous shock, another
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Fig. 3. (Color online) Impact of α on the auto-correlation of
the absolute values of the returns. A linear dependence C(l) =
1 − k ln(l/T ) in the logarithm of the time lag l shown here
is undistinguishable from a power law C(l) ∼ 1/(l/T )k for
k = 0.1–0.3 over these three orders of magnitude, similarly
to empirical results. Here, T is a constant, which takes the
meaning of the “integral” scale in the MRW model.

hallmark of multifractality (Fig. 4); (v) the existence of
bubbles and crashes (see [37] for a detailed description).
We have explored 160 models with bmax from 0.1 to 0.5
with spacing 0.1, σmax from 0.01 to 0.08 with spacing
0.01, and CV from 0.1 to 0.7 with spacing 0.2. For each
model, we generate time series of length equal to 105 time
steps. We have found a large set of parameter combina-
tions which lead to realistic stylized facts. The results pre-
sented here are for (bmax = 0.3, σmax = 0.03, CV = 0.1)
which is typical.

Figure 2 shows the evolution of the pdf’s of returns
from stretched exponential or power laws at short time
scales that cross over smoothly to a Gaussian law at the
largest shown time scale, in excellent agreement with em-
pirical facts [33–36]. Note the difference between the con-
tinuous and dashed lines for τ = 4, 16, and 64, which ex-
presses the existence of significant dependence in the time
series of returns. Such behavior is very similar to what is
observed in real data.

The temporal correlation of the log returns r1 as a
function of the time lag � exhibits a very short correlation
time, of duration smaller than one time step (not shown).
In contrast, the temporal correlation of the absolute value
of log returns r1 (“volatility”), taken as a proxy for the
volatility, exhibits long-range dependence up to approxi-
mately 1000 time steps. The linear-log relationship sug-
gested by the plots in Figure 3 are predicted by the multi-
fractal random walk (MRW) [38], which provides an excel-
lent model of many properties of financial time series [39].
The MRW depends only on three parameters: the multi-
fractal parameter λ2 ≈ 0.02–0.04, the integral time scale
T ≈ 1 year and the standard deviation of returns. Com-
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local burst of volatility occurring at some time ts, we translate
and superimpose all time series starting at those times of local
bursts of the same amplitude s. Averaging over these time
series of volatility obtains the average conditional relaxation
function of the volatility E[|r|2(t)|s] ∼ t−η(s) following a local
burst of volatility of amplitude ∝ es. The prediction (9) gives
the straight lines for T = 200. The inset shows the average
normalized conditional volatility E[|r|2|s]/E[|r|2] as a function
of the time after the local burst of volatility for different log-
amplitudes s. The figure shows the exponents η(s) measured
as the slopes of the curves in the inset for τ = 1, 2, 4, and 8.

paring the dependence properties of the returns and of
the volatility suggests that one trading day corresponds
roughly to 5 time steps of the model. This correspon-
dence translates into a integral time scale T of about
200 days, which is compatible with empirical estimates
for the MRW [40]. The MRW also predicts (and this is
well-verified by empirical data) that the autocorrelation
functions of |rτ (t)| for different τ should superimpose for
time lags larger than their respective τ [38]. This pre-
diction is also approximately observed in our model (not
shown).

One of the stylized facts is the long-memory of volatil-
ity, which is usually characterized by a decay of the volatil-
ity autocorrelation C(l) as a power-law with a very small
exponent k (around 0.2–0.3). In contrast, Figure 3 shows
that C(l) is well-approximated by

C(l) = 1 − k ln(l/T ). (4)

This expression is actually undistinguishable from the of-
ten quoted power law

C(l) ∼ 1/(l/T )k, (5)

if the exponent k is typically smaller than 0.3, for the range
of time lags l usually available. Indeed, expression (5) can
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be written as

C(l) ∼ 1/(l/T )k = exp[−k ln(l/T )]

= 1 − k ln(l/T ) + (1/2)(k ln(l/T ))2 + ...
(6)

by expanding the exponential. Thus, for k ln(l/T ) < 1,
expressions (4) and (5) are approximately the same and,
in general, the financial data does not allow one to distin-
guish between the two formulations.

Another important stylized facts is the multifractal
structure of the absolute values of log-returns [41,40]. We
verify the existence of a strong multifractality in our time
series (not shown) expressed by the scaling of the struc-
ture function

Mq(τ) ≡ 〈|rτ |q〉 ∼ τξq , (7)

with exponents ξq exhibiting a clear nonlinear dependence
as a function of the order q of the structure function.
Rather than showing this standard looking multifractal
spectrum, Figure 4 presents another striking signature of
multifractality discovered first in empirical data [13]: the
MRW predicts a continuous spectrum of exponents η(s)
for the relaxation of the volatility

E[|r|2(t)|s] ∼ t−η(s) (8)

from a local peak as a function of its amplitude ∝ es given
by [13]

η(s) =
2s

3/2 + ln(T/τ)
. (9)

Relation (9) together with (8) describes a continuous spec-
trum of exponents, that is, a continuum of singularities in
the time domain. For the MRW, the two statements can
be seen to be equivalent. More generally, multifractality in
the time domain has two equivalent signatures: (i) a con-
tinuous spectrum of exponent ξq for the moments (also
called structure functions) of order q and (ii) a continuous
set of Hölder singularities (or local fractal singularities).
The exponents η(s) correspond to the set of Hölder ex-
ponents quantifying the local Hölder singularities in the
time domain, which provide a diagnostic of the multifrac-
tal measure equivalent to the moment exponents ξq.

4 Concluding remarks

We have presented a model which allows us to test within
the same framework the comparative explanatory power
of boundedly rational versus irrational agents, with re-
spect to the main stylized facts of financial markets. The
assumptions of our model are quite standard, taken one
by one. What we have done is to put them together to
obtain a single model in which the question on whether
boundedly rational agents or irrational agents better ex-
plain the observed regularities of the financial markets
can be investigated. In particular, the “irrational” regime

(β = +1) derives from the evidence from a growing lit-
erature in neuro-psychology and behavioral finance doc-
umenting that feelings, mood and overconfidence affects
perception through misattribution leading to incorrect
judgments or affecting people’s ability to process infor-
mation. Misattribution is a fundamental and ubiquitous
psychological trait of humans and its impact on trading
is now recognized and the recognition of its importance
is growing. One contribution of our work is to suggest an
observation consequence of the misattribution trait shared
by humans.

The model studied here asks directly the question
whether the agents aggregate collectively in a boundedly
rational or irrational behavior. Galam [17] has introduced
irrationality in a different way via a “temperature” in-
troducing a stochastic element in the decision process
modeled within a random field Ising model. In contrast,
our model has allowed us to falsify the question on
the bounded rationality versus irrationality of investors,
through a simple implementation emphasizing the impor-
tance of biases misrepresenting the news, rather than the
role of stochastic errors.

We are grateful to Gonçalves for useful discussions. This work
was partially supported by the National Natural Science Foun-
dation of China (Grant No. 70501011), the Fok Ying Tong
Education Foundation (Grant No. 101086), and the Shanghai
Rising-Star Program (Grant No. 06QA14015).
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